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Role-similarity based functional prediction
in networked systems: application to the
yeast proteome

Petter Holme"' and Mikael Huss>

' Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
2Department of Numerical Analysis and Computer Science,
Royal Institute of Technology, 100 44 Stockholm, Sweden

We propose a general method to predict functions of vertices where (i) the wiring of the
network is somehow related to the vertex functionality and (ii) a fraction of the vertices are
functionally classified. The method is influenced by role-similarity measures of social network
analysis. The two versions of our prediction scheme are tested on model networks where the
functions of the vertices are designed to match their network surroundings. We also apply
these methods to the proteome of the yeast Saccharomyces cerevisiae and find the results

compatible with more specialized methods.

Keywords: functional prediction; complex networks; prediction algorithm; yeast proteome;
protein functions

1. INTRODUCTION

Systems made up of entities that interact pairwise can
be modelled as networks. To comprehend the emergent
properties of such systems—the objective of the study
of complex systems and systems biology—one approach
is to investigate the global properties of the correspond-
ing networks (Buckley & Harary 1989; Wasserman &
Faust 1994; Albert & Barabasi 2002; Newman 2003). In
many cases, the individual entities (or vertices) have
distinct functions in the system. In such cases, one can
predict these functions from the vertices’ position in the
network, provided the wiring of the edges relates to the
function of vertices. For example, a corporate hierarchy
may be topped by a CEO, followed by a CFO and COO,
so a chart of who reports to whom is enough to identify
these positions. Another problem of much recent
interest in this category is predicting protein functions
(Hodgman 2000) from the networks of protein inter-
actions (Hishigaki et al. 2001; Deng et al. 2002; Maslov &
Sneppen 2002; Letovsky & Kasif 2003; Samanta &
Liang 2003; Vazquez et al. 2003; Yook et al. 2004;
Leone & Pagnani 2005). These methods, like other
methods based on protein sequences, are important
because one needs function-specific and possibly hard-
to-design in wvivo, genetic or biochemical tests to
confirm a protein function, while interaction and
sequence data can be obtained fairly easily.

In this paper, we propose a general method of
predicting the functions of vertices in networked
systems where the functions are partly mapped out.
The rationale of our algorithm is to match unknown
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vertices with the most similar (judging from the
network structure) categorized vertex and take
the functions of the latter vertex as our forecast. The
network similarity concept we ground our method on is
related to the notion of regular equivalence (Everett
1985; Wasserman & Faust 1994) or role similarity
(Luczkovich et al. 2003) of social network theory.
Roughly speaking, two vertices are similar, in this
sense, if the network looks alike from their respective
perspectives. We evaluate our method on model
networks where the categories of vertices reflect their
placement in the network. We also apply the method to
Saccharomyces cerevisiae protein data obtained from
the MIPS database (Pagel et al. 2004; data extracted
23 January 2005).

2. ROLE SIMILARITY AND DEFINITION OF THE
PREDICTION SCHEME

Our starting point is networked datasets where some of
the vertices are functionally categorized. Between a
pair (i, j) of classified vertices we can assign a functional
similarity o(i, j) based on the number of functions they
have and how many they share

o'f(ivj) = J(F’h F/) - <J>’ (21)

where F; is the function set of i (we assume a finite
number of functions), J(-) denotes the Jackard index
J(A, B)=|ANB|/|AUB| and the average is over all
pairs of categorized vertices. We will later need o (i, j) =0
to represent neutrality, which is why we subtract the
mean. The crucial thing is, of course, to assess the
similarity between vertices of unknown function. We
continue this section by giving an overview of the role

© 2005 The Royal Society
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Figure 1. Illustration of structural and regular equivalence.
(a) 1and jare structurally equivalent since they have the same
neighbourhoods and (b) 7 and j are regularly equivalent since
regularly equivalent vertices between the neighbourhoods

match. Vertices of the same colour are regularly equivalent
in (b).

similarity concept and our iterative scheme to assign a
similarity score to a pair of functionally unclassified
vertices; we then describe how such a similarity measure
can be combined with the functional similarity measure
to form a functional prediction algorithm.

Role similarity refers to a rather broad set of concepts
and related measures. Basically, the role of a vertex is
determined by the characteristics of the vertices to
which it is connected (Wasserman & Faust 1994)."
Consider two vertices, 4 and j. If their neighbourhoods
are similar, we say ¢ and j have high role similarity.
The question of how to define the similarity of the
neighbourhoods I'; and I'; leads to two different
concepts. One choice matches the identity of vertices
in the neighbourhood. This leads to the structural
equivalence relation (figure 1) which is true if I',=T.
Another way to compare neighbourhoods is to match
the similarity of vertices in the neighbourhood which
gives the concept of regular equivalence (figure 1)—if
one can pair the vertices in I'; with the vertices in I';such
that each pair is regularly equivalent, then 7 and j are
also regularly equivalent. Since vertices with the same
functions need not, in general, be close, we will need a
similarity score measuring how close to regular equi-
valence two vertices are. Following Jeh & Widom
(2002) and Blondel et al. (2004) we define a similarity
score based on iterating the regular equivalence
principle: ‘two vertices are similar if they are pointed
to, or point to, vertices that are themselves similar.” In a
general networked system, one may have many distinct
kinds of edges. Assuming we have RE[1, ) edge types,
one implementation of the regular equivalence principle
is to sum the similarities between vertices of the
neighbourhoods

R

n+1 Z Z ZU;(?;/,]/)"'

= i in in
r=114 El"mj EFM

DBEDIEACKD P

Eeryyern
(2.2)

where a%(4, 5) is the similarity between i and j after the
nth iteration and I'". is the in-neighbourhood of i with
respect to r-edges. Whenever a pair of classified vertices
(7, j) appear in equation (2.2) we use the o/(4, j) value of
equation (2.1). That is, we assume the pre-existing
functional classification is more accurate than the role

'Note that the nomenclature is somewhat ambiguous. Another use of
‘role’ is to say that vertices with similar values to vertex-specific
structural measures have the same role (Lusseau & Newman 2004;
Guimera & Nunes Amaral 2005).
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similarities and, hence, do not update the former. To
avoid overflow problems we rescale all similarities so
that max;]|a}, (4, 5)| = S after each iteration. S will be a
parameter setting the relative importance of the
functional similarities compared with the subsequent
assessments of . We break the iteration when the sum,
before the normalization, has not changed by more than
a 10~ %h of its previous value. Typically this happens
after three or four iterations. During the first iteration
of equation (2.2), a(i, j) is determined by the similarity
of neighbourhoods of i and j. As the iterations proceed,
vertices further and further away are taken into
account. For details on the rationale, existence and
uniqueness of a fixed point of the iterations, see Jeh &
Widom (2002).

By the equation (2.2) definition, vertices of high
degree (number of neighbours) will appear more similar
to the average other vertex than low-degree vertices.
To compensate for this effect one may divide by the
appropriate degrees (numbers of neighbours) to obtain

R

Z kln 1n Z Z H’ 7j

r=1 7,7 ] T Zlerm ]rerm

kout kout Z Z H 7j ’ (23)

T jlerout J/Ernut

n+1 Z]

where k;nT is the in-degree of i with respect to r-edges.
From now on we call ¢'(i, j)=0% (i, j) of equation (2.2)
and ¢"(i, j) of equation (2.3) the I- and II-similarity
between i and j, respectively.? One can further develop
this measure by adding different weights to the different
kinds of vertices; adding stronger weights to the more
reliable edges. Since the choice of weights is highly
problem-dependent and since the results for the model
and protein interaction networks are quite robust to
this choice we will henceforth only discuss the case of
equal weights.

In general we can now define our prediction scheme
as follows.

(i) For vertex pairs with at least one unclassified
vertex initialize (4, j) to 0 if i#j and to 1—(J)
otherwise.

(ii) Calculate the similarity scores for all pairs of
unique vertices such that at least one is
unclassified.

(iii) For an unclassified vertex 4, predict the function
set F; where 7 is the classified vertex with the
highest similarity to 7. If 7 is not unique, but a set
I={iy,...,1,} has the highest similarity to 7, then
let the set G of functions present in more than half
of the set of js be your guess. If G is empty, let F}
for a random j&€ I be the guess.

The diagonal elements will have maximal functional
similarity (which is why we set them to 1—(J) in step

2There are more possible implementations of the mentioned similarity
principle. We choose these because they perform better on our two
test cases. For other problems, it might be the case that another
implementation listed in Jeh & Widom (2002) performs better.
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Figure 2. Model networks where vertex function and position are related. (a) shows the initial network. (b) shows a realization
with 30 vertices and rewiring probability 7=0.1. An asterisk indicates a rewired edge.

(ii)), otherwise we assume neutrality. The back-up
selection rules in step (iii) will typically be needed when
unclassified vertices are structurally equivalent to
classified vertices and the use of the majority rule,
instead of a random guess, will compensate for
occasional errors in the assignment of functions to
classified proteins. As mentioned above, the functional
classification is assumed to be more accurate than the
role-similarities, and it is thus sensible to choose S in
the interval [0,1—(J)]. The appropriate value of S, the
parameter setting the relative importance of the
functional similarities, is problem dependent. We will
use S=0.8, which is within the chosen interval for both
our two test cases. To summarize, we have proposed
two versions of our prediction scheme, scheme I and II,
corresponding to I- and II-similarity.

3. APPLICATION TO MODEL NETWORKS

To test our prediction algorithm, we construct model
networks where the assigned functions of the vertices
correspond to their position in the network. We test the
algorithm’s size scaling and performance in subideal
conditions by randomly perturbing the network.

3.1. Definition of the model networks

In defining our model, we will metaphorically use the
flow of raw material, products and information in a
manufacturing system. For our purpose we only need
networks where the functions of vertices correspond to
their position in their network surroundings—we will
not further motivate its relevance as a model for
manufacturing networks. We assign five distinct func-
tional classes of the vertices: The supply vertices are the
source of the raw material which flows along A-edges to
assembler vertices. The assembled products are trans-
ported via B-edges to delivery vertices that dispatch the
products. From the delivery vertices, informational
feedback is sent to the supply vertices through C-edges.
Furthermore, the A- and B-edges can fork at A- and
B-distributor vertices.

The precise definition of the model is as follows: Start
with the kernel shown in figure 2a, then grow the
network vertex by vertex. At each iteration, assign,
with equal probability, one of the above functions to the
new vertex. Then, depending on the assigned function,
form edges including the new vertex as follows.

J. R. Soc. Interface (2005)

Supply: add an A-edge to an assembler or
A-distributor and a C-edge from a delivery vertex.

Assembly: add an A-edge from a supply vertex or
A-distributor vertex and a B-edge to a delivery vertex
or B-distributor.

Delivery: add a B-edge from an assembler or
B-distributor and a C-edge to a supplier.

A-distribution: add an A-edge from a supply or
A-distributor vertex and an A-edge to an assembler or
A-distributor.

B-distribution: add a B-edge from an assembler or
B-distributor vertex and a B-edge to a delivery vertex
or B-distributor.

The vertex to be attached to the new vertex is
chosen, given its functional category, with uniform
randomness. Note that the number of edges will on
average be twice the number of vertices (two edges are
added per vertex).

From the definition so far, any vertex is identifiable
from its neighbourhood—a vertex with incoming
C-edges and out-going A-edges is a supplier, and so
on. The wiring of the edges and the functional
classification in real datasets are seldom perfect. To
test the prediction scheme under more realistic
circumstances we randomize the network as follows;
after generating a network according to the above
scheme, we sequentially go through all edges. With
probability 7, we detach the from-side of an edge and
reattach it to a randomly chosen vertex so that self-
edges or multiple edges (of the same type—A, B or C)
are not formed. We rewire the to-side likewise with the
same probability. A realization of the algorithm is
displayed in figure 2b. After the rewiring there is not
necessarily enough information to classify a vertex; ¢ in
figure 2b is an assembler but could just as well have
been a B-distributor.

3.2. Prediction performance

To test our prediction scheme we mark a random set of
aN, a€(0,N), vertices unclassified. Then we predict
the function of these vertices and let the average
fraction of correctly predicted vertices s be our
performance measure. figure 3 shows s for a=1/50
and different network sizes as a function of the rewiring
probability 7. In the small-r limit, the I-similarity
prediction scheme makes an almost flawless job with
$>99.9% for N>500. Note that since we have five
distinct functions random guessing could not do better
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than s=1/5. This value, s=1/5, is by necessity
attained in the random limit r=1. For small rvalues
the scheme II performs best, but if 7<0.2, scheme I
performs slightly better. The size convergence for
scheme I is faster, so II may outperform I in the large
network limit. To understand the performance of the
different schemes we note that scheme I has a tendency
to match an unknown vertex to a known vertex of high
degree. When r=0, this effect leads to some prediction
errors for scheme I. However, the redundant informa-
tion about high degree vertices makes the more robust
to minor perturbations. (If one edge is rewired, a
fraction 1—1/k of the edges is still correct, which is
large if the degree k is large.) This redundancy is
probably the reason for the slower decay of the s(r)-
curves of scheme I compared with the corresponding
curves of scheme II.

We observe that the performance increases with the
systems size for both schemes. This is an important
effect since databases generally grow in size—our
prediction scheme will thus be more accurate with
time. We surmise that this is because the bigger the
network gets, the more likely it is that there is a very
good matching. This is an effect local methods (taking
only the surrounding of a vertex into account) could not
utilise. A full explanation of this effect lies beyond the
scope of this paper.

4. PREDICTING PROTEIN FUNCTION IN YEAST
4.1. Functional prediction of proteins

Experimentally specifying protein functions requires
demanding and potentially expensive tests. Obtaining
good guesses of the functions of an unknown protein is
very useful. During the last decade, a great number of
methods have been suggested for protein functional
prediction, including methods based on sequence or
structure alignments (Pawlowski et al. 2000; Irving
et al. 2001), attributes derived from collections of
sequences or structures (Dobson & Doig 2003; Jensen
et al. 2003), phylogenetic profiles (Pellegrini et al. 1999)
and analysis of protein complexes (Gavin et al. 2002).
Much recent work has concentrated on functional
prediction based on protein—protein interaction data.
Many of these are specialized methods that exploit
specific features of protein—protein interaction data
(Marcotte et al. 1999a,b; Hodgman 2000; Schwikowski
et al. 2000; Hishigaki et al. 2001; Deng et al. 2002;
Letovsky & Kasif 2003; Samanta & Liang 2003; Strong
et al. 2003; Vazquez et al. 2003), such as the empirical
observation that those vertices which interact physi-
cally are likely to share some functionality. The more
general approaches (Hishigaki et al. 2001; Deng et al.
2002) are local, in the sense that they are based on
pairwise statistics only. For this reason, they may not
share the advantageous size scaling properties of our
method.

4.2. Applying the method to protein data

There are two types of large-scale network data
available for S. cerevisiae: ‘physical’ and ‘genetic’
protein—protein interactions. The terms ‘physical’ and

J. R. Soc. Interface (2005)

‘genetic’ refer to the type of experiment used to deduce
the interaction. The genetic experiments are based on
mutation studies and the evidence from them is of a
more indirect nature. We therefore distinguish between
physical and genetic edges. All edges are undirected.
Our dataset, derived from the MIPS database, has
N=4580 linked together by 5129 genetic regulation
edges and 7434 physical interaction edges. We removed
duplicates, self-edges and interactions where one or
both of the interacting substances were not proteins.
The assigned functions are arranged in a hierarchical
fashion, according to the FunCat categorization scheme
(Ruepp et al. 2004) used by the MIPS database. The
first level contains the coarsest description of a
protein’s function (such as ‘metabolism’), the second
level is more specified (such as ‘amino acid metab-
olism’) and so on. We tested our algorithm on the first-
and second-level of this hierarchy and, thus, treat
functions that differ in a finer classification as equal.
There are three categories with no substantial func-
tional information—‘ubiquitous expression’, ‘classifi-
cation not yet clear-cut’ and ‘unclassified proteins’. We
considered vertices with no other assigned categories
than those listed above.

In figure 4, we show a small example of scheme II in
action on the yeast data. Suppose YJL191w is to be
classified (we know it has the level-1 functions ‘protein
with binding function...” and ‘protein synthesis’). The
classified protein with highest similarity is YOR133w.
This is because YNLO41c, which interacts physically
with YJL191w, is functionally identical (at level one of
the hierarchy) to YBR068c, which is physically linked
to YOR133w. Similarly, YJL191w is genetically linked
with YCRO31c, which shares one functional category
with YDR385w, which is genetically linked with
YOR133w. These two features give a high similarity
score to the pair YJL191w and YOR133w, so scheme II
guesses that YJL191w has the functional category
‘protein synthesis’ but misses the ‘protein with binding
function...” category.

4.3. Performance of the scheme

For the previously described test networks we know a
priori that the number of functions to be predicted is
one. The same may be true for a variety of systems but
not for proteins. With the number of functions as one
variable in the prediction problem we proceed to
replace the success rate s with the two measures
precision sy and recall s_ (the names are borrowed
from corresponding quantities in the text-mining
literature, see Raghavan et al. (1989) and references

therein),
sy = <%> and s_ = <%>,

where n, is the number of correctly predicted functions,
fis the real number of functions and f, is the number of
predicted functions. 1 — s, is thus the expected fraction
of false-positive predictions (and similarly for s_). Both
these measures take values in the interval [0, 1] with 0
meaning that no function is predicted correctly and 1

(4.1)
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Figure 3. The fraction of correctly predicted functions s for
our model networks as a function of the rewiring probability r;
(a) shows the results based on I-similarities and (b) is the
corresponding plot for II-similarities. The points are averaged
over approximately 1000 runs of the network construction
and prediction scheme with a=1/50. Error bars are smaller
than the symbol size. The horizontal line marks the limit of
random guessing (0.2).
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Figure 4. Example of yeast protein prediction from the first-
level functional data with scheme II. When YJL191w is
marked unknown it gets matched with YOR133w because
their surroundings look similar. The arrowed lines mark
genetically determined interactions, while other lines rep-
resent physically determined interactions.

representing perfect prediction. The averages are over
the set of predicted functions in the same kind of leave-
one-out estimates as performed for the test networks.

We follow Deng et al. (2002) and Vazquez et al.
(2003) and use the neighbourhood counting method
(NCM) of Schwikowski et al. (2000) for reference
values. This method assigns the f, most frequent
functions among the neighbours of the physical
interaction network to the unknown protein (i.e. f, is
a parameter of this model). Considering its simplicity
compared with the more elaborate procedures listed
above, this is a remarkably efficient method. In our
implementation, if the f,th function is not unique we
select it randomly. Thus, proteins with no neighbours
are randomly assigned f, functions. Precision and

J. R. Soc. Interface (2005)

recall values are displayed in table 1. We use f, = 2 for
the NCM which is the closest value to the average
number of functions per protein for both levels one and
two in our dataset. We note that our methods have
10-45% higher precision values, but 2-18% lower
recall values compared with the NCM. As the
distinction becomes finer between the functions with
the level of the FunCat hierarchy, it is not unexpected
that the values of s, and s_ decrease from level 1 to
level 2. The values may look low compared with
similar tables in other papers on protein prediction,
but these often use other performance measures (such
as counting the fraction of proteins with at least one
correctly predicted function, and so on) or do not
include low-degree vertices. We note that, like the
more disordered test networks, scheme II gives better
performance in general (typically having better recall
values, but slightly worse precision values).

5. SUMMARY AND DISCUSSION

We have proposed methods for predicting the function
of vertices in networked systems where the function of a
vertex relates to its position. The principle behind our
scheme is role equivalence as related to the regular
equivalence concept of social network analysis, that is,
vertices are similar if the network, as seen from the
respective vertices, looks similar. We make two
extensions to the method proposed by Jeh & Widom
(2002) and Blondel et al. (2004) for networks where
some of the vertices are functionally categorized. An
uncategorized protein is predicted by copying the
functions of the vertex with highest role similarity.
Our schemes, corresponding to our two role similarities,
are tested on model and protein interaction networks.
These two test cases are intentionally different to test
the general applicability of our approach. A summary
of the different network structural properties is found in
table 2. The model networks are designed to have a
correspondence between the function of the vertex and
their network surrounding. This correspondence can be
tuned by a randomization parameter. We find that the
performance of both schemes increases with the system
size (the fraction of unknown vertices and rewired edges
is fixed), which makes the applicability of our methods
increase with time (as databases, in general, tend to
grow). The differences between scheme I and II can be
described by the fact that scheme I gives (compared
with scheme II) a higher similarity to vertex pairs
containing a high-degree vertex. In addition to the
model networks we also apply our method to the
S. cerevisiae proteome. We use the networks of protein—
protein interactions and obtain results that compare
well with standard methods designed solely with
protein functional prediction in mind. We do not
claim that our method outperforms the best specialized
protein prediction methods—our aim is to construct a
global method for general functional prediction and
most protein functional prediction schemes would
perform poorly on our test networks. The ideas of this
paper might, however, contribute to future, more
elaborate methods for prediction of protein functions.
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Table 1. The performance of our methods (scheme I and scheme II) compared with the neighbourhood counting method (NCM)
of Schwikowski et al. (2000).

(s is the average fraction of correct predictions among the predicted functions averaged over all the classified proteins. s_ is the
average fraction of correct predictions among the actual functions. For the NCM predictions we use the parameter value f, =2
(i.e. two predicted functions per protein). Level 1 and 2 refers to the cut-off levels of the FunCat scheme (Ruepp et al. 2004)—
‘level 1’ means that functions of the same first class are considered equal and so on. The numbers in the brackets are given the
standard error in units of the last decimal.)

level 1 level 2

NCM scheme 1 scheme II NCM scheme I scheme II
sy 0.269(6) 0.392(6) 0.337(6) 0.199(5) 0.238(6) 0.220(6)
S_ 0.354(6) 0.291(5) 0.346(7) 0.252(6) 0.199(5) 0.231(6)

Table 2. Qualitative comparison between the network structure of the model and yeast protein networks.

(For the degree distribution we assume the edges to be undirected and of the same type. The degree of distribution of protein
interaction networks is known to be heavily right-skewed (Jeong et al. 2001). This is true for our dataset as well. (We do not dwell
further on the exact functional form of the distribution.) The exponential functional form of the model networks follows from the
fact that the model reduces to the ‘uniform attachment model’ of Barabdsi et al. (1999) when the edge and vertex categories are
disregarded. The degree—degree correlations refer to whether high-degree vertices tend to be connected to other high-degree
vertices (which would give a positive correlation) or to low-degree vertices. Negative degree—degree correlations for protein
networks were first observed by Maslov & Sneppen (2001); see also Newman (2003).)
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model yeast protein
directed yes no
number of functional classes 5 18 (level 1), 96 (level 2)
number of edge-type, R 3 2
degree of distribution exponential fat-tailed
degree—degree correlations neutral negative

The basic advantage of our method, as we see it, is
that it is a very general method that should apply to
functional prediction in many systems. Indeed, our
model networks and the protein interaction networks
are very different, both in the network structure and the
distribution of the functions. Moreover, it makes use of
global network information, giving a performance that
does not decrease as the systems gets larger. The fact
that it is a truly global algorithm—the prediction of
every vertex’s functions takes wiring of the whole
network into account—makes it rather slow (compared
with, for example, specialized protein functional predic-
tion methods, such as the one proposed by Schwikowski
et al. (2000)). The execution time-scales are O(M?)
(where M is the total number of edges), but datasets of
10*-10°, which cover, for example, the size of proteomes
of known organisms, should be manageable for present
day computers. We believe the problem of functional
prediction in different types of networked systems
remains unresolved—in terms of utilising the charac-
teristics in both general and more specific systems.

The authors thank Micha Enevoldsen, Elizabeth Leicht and
Mark Newman for comments.
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